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Abstract—A human-RRT (Rapidly-exploring Random Tree)
collaborative algorithm is presented for path planning in urban
environments. The well-known RRT algorithm is modified for
efficient planning in cluttered, yet structured urban environments.
To engage the expert human knowledge in dynamic replanning of
autonomous vehicles, a graphical user interface is developed that
enables interaction with the automated RRT planner in real-time.
The interface can be used to invoke standard planning attributes
such as wayareas, space constrains, and waypoints. In addition,
the human can draw desired trajectories using the touch interface
for the RRT planner to follow. Based on new information and
evidence collected by human, state-dependent risk or penalty to
grow paths based on an objective function can also be specified
using the interface.

I. INTRODUCTION

The performance of autonomous systems in complex en-
vironments can be improved by including human percep-
tions and expert knowledge. Within a system, automation
and humans may be allocated with different tasks based on
cognitive workload, capability or expertise, execution speed,
etc. demanded by the tasks [1]. Alternatively, automation
working with humans may reduce cognitive burden while
benefiting from valuable inputs from humans, which may
include recalled facts, measurements fused from heterogeneous
sources including soft information from human observers [2],
[3], and decisions made in response to new and undocumented
situations wherein robots often fall short. Clearly, there is
some value to be gained by including human observations and
decisions [4], [5], which leads to an important question of
how to combine automation and human control for the most
effective performance [6], [7].
Path planning is a fundamental problem in robotics with

application in robotic exploration, target tracking, autonomous
guidance, etc., that aims at finding a feasible path to a goal
location based on an objective function and a set of constraints.
The automated path planning algorithms can be classified
into the following categories: grid-based search, interval-based
search, geometric algorithms, potential fields, and the state-
of-the-art sampling-based algorithms. Although the automated
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algorithms work well in many cases, they are known to have
limitations in complex environments and may fail to find a
solution, get trapped in local minima, obstacles, or map dead-
ends, or require excessive computation time and resources.
While automated algorithms are preferred, especially in multi-
agent systems [8], due to computational advantages, given the
brittleness of automation to unforeseen and untaught scenarios,
human involvement in path planning becomes critical. Humans
with expert knowledge, a result of technical practices, training,
and experience and reasoning skills, can overcome the limi-
tations of automation when working in collaboration with the
planning algorithms.

Within the robotics community, there is increased momen-
tum in exploring ways to include human-generated information
and reasoning into the automated path planning operation. The
objective of human collaboration is largely to inject optimality
into the generated solution or to affect the search process
of the automated planning algorithms by defining goals or
objective functions [9]–[16]. The high-level course of action
and goals can be defined by an operator for the automated al-
gorithm to generate feasible paths, which can be subsequently
reviewed, approved, and executed by an operator (cf. [9],
[10], [13], [15]). A dynamic environment can be characterized
by varying situation awareness, objective function, and scene
features (e.g., obstructions, hazards). To improve the quality
and suitability of the paths in dynamic environments, the expert
knowledge should be exploited by engaging the operator in
close collaboration with the automated planners. The operator
may interact with the planner to alter the automation-generated
path, for example, by moving, adding, or removing waypoints
[11], [12], [14], [17]–[20], constraining the planning space or
delimiting the admissible space [20], [21], or modifying the
parameters of the objective function [22]. In a separate study,
Clare et al. [23] assessed the operator workload and system
performance as a result of replan prompting rate, i.e., when
the operator chooses to compare the automation-generated
path with the original path. In [24], an uncertainty reasoning
based model is proposed to incorporate human reasoning and
perceptions into the automated algorithm. Rapidly-exploring
Random Tree (RRT) [25] is a well-known sampling-based path
planning algorithm suitable for higher-dimensional spaces. The
convergence and coverage properties of the RRT algorithm can
be improved with appropriate human collaboration [11], [14],
[26], [27]. Studies have shown that the ability to express the
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operator’s intent has large preference for the interaction method
[18], [28]. Taı̈x et al. developed a haptic arm and space mouse
based user interaction tool [27] for navigating narrow spaces in
higher dimensions. In [26], Ladeveze et al. proposed a visual-
haptic feedback for path planning in cluttered environments.
In this paper, we extend the human-RRT collaboration

results by Caves [11] and Griner [14] to path planning in urban
environments. The urban environment can be characterized by
cluttered configuration-space with state-space constraints (e.g.,
obstructions, speed limits), varying topography (e.g., traffic
density, road or lane closures), high-value or high-risk zones
(e.g., school areas, government buildings, military installations,
nuclear facilities), unpredictable events (e.g., accidents, fire).
This necessitates dynamic replanning of autonomous vehicles
to accommodate the time-varying characteristics of the given
environment based on new information or observations. The
objective of this work is twofold. First, to develop an efficient
planner for urban environments leveraging on the state-of-the-
art sampling-based algorithms. Second, to develop a touch-
based GUI for human collaboration following the principles of
an effective GUI, i.e., learnability, controllability, and usability.
In addition to defining waypoints and wayareas [11], [14] for
the automated planner, the developed GUI enables the operator
to specify planning space constraints, e.g., by selecting roads or
by defining circular “no-grow” regions. More importantly, the
presented algorithm also considers state-dependent risk to grow
paths. Based on gathered intelligence and situation awareness,
the operator may specify risk associated with planning paths
in various regions of the configuration space. For example,
in a military application of target tracking and interception,
the crowded and high-value regions, such as school building
and shopping malls, would have high risk to grow paths. The
applications that can benefit from the developed collaborative
urban path planning method include: self-driving cars, urban
target tracking, urban search and rescue in disaster relief, and
emergency response planning.

II. PATH PLANNING ALGORITHM

Fig. 1(a) shows an urban environment that is cluttered with
obstructions. Let x(t) ∈ X be the time-varying state of an
unmanned aerial vehicle (UAV), where X is the configuration
space. The configuration space may include free space Xfree
and obstacles Xobs, such that Xfree∪Xobs = X . Given the initial
configuration xinit of the UAV, the goal of path planning is to
find dynamically feasible, obstacle-free paths spanning X (or
reaching a goal configuration xgoal). Beginning with xinit, the
standard RRT randomly samples a point xrand from Xfree. Then,
the tree grows from the nearest node xnear in the direction of
xrand by an amount ε ∈ R to reach the new configuration
xnew. Obstacle avoidance and dynamic feasibility checks may
be included in this step. Along with the paths from xinit, the
planner also provides a series of control inputs necessary to
follow the paths.
In the presented problem, for the constant altitude flight of

a fixed-wing UAV, X ∈ R2 × SO(3). The constant altitude

UAV dynamics are given by

ẋ = V cos(φ) ẏ = V sin(φ)

φ̇ =
g

V
tan(θ) θ̇ =

u− θ

τ
(1)

where (x(t), y(t)) ∈ R
2 is the xy-position of the UAV on the

map, φ(t), θ(t) are the heading and roll angles, respectively,
and u(t) is the roll rate control input. Let x(t) = [x, y, φ, θ]T

be the state vector. The forward velocity V is uncontrolled
and can be state-varying, for instance, when flying in congested
alleyways the velocity can be small versus when flying in open
spaces. The UAV is considered to travel along the road network
and does not fly over the obstacles.

(a) (b) (c)

Fig. 1. (a) An urban environment with obstructions (rectangles) and road
network (empty space), (b) standard RRT path planning (runtime 100s), (c)
modified RRT path planning (runtime 100s).

Typically, for an urban environment, we have Xfree � Xobs.
Therefore, the random sampling approach in RRT results in
higher possibility of getting stuck in the obstacles and growing
branches along the roads that go “nowhere” as shown in Fig.
1(b). We present a modified RRT algorithm with “guided”
sampling for improved planning performance in congested ur-
ban environments. The presented algorithm assumes complete
knowledge of the map.
Before we present the algorithm, let us define the nomen-

clature. The tree is an undirected graph G(V , E) consisting of
vertices (nodes) V and edges E . The road network consists of
a set of road segments R and a set of intersections I with finite
area. The xy-space covered by an ith intersection or road be
denoted by Y(Ii) ⊂ R2 or Y(Ri) ⊂ R2, respectively. Let k
denote the discrete time.
The main idea is, instead of uniformly sampling points from

the entire free space Xfree, to sample more often from a feasible
subset X k

ints ⊂ Xfree to incrementally (and autonomously) guide
the algorithm to explore the free space. The concept of “visible
intersections” is introduced to obtain the desired space X k

ints.
Given a graph G(V , E), the visible intersections are defined
as a subset of I that are visible from the existing nodes V . In
other words, the nodes have an obstacle-free line-of-sight to the
visible intersections. Let the set of visible intersections at time
k be denoted by Ikvis. Then, X k

ints at time k is the subset of Xfree
with xy-space covered by Y(Ikvis), i.e., Y(Ikvis)×SO(3)→ X k

ints.
Finally, the sampling scheme can be written as

P(xrand ∈ X
k

ints) = p, P(xrand ∈ Xfree) = q

p� q, p+ q = 1. (2)
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The modified-RRT pseudocode is given in Algorithm 1.
‘VISIBLE INTERSECTIONS’ finds new intersections visible to
V at time k to obtain Ikvis and ‘CONF SPACE’ provides the R2

configuration space covered by Ikvis. As the tree grows, the
set Ikvis approaches I due to probabilistically complete nature
of RRT. ‘RANDOM STATE’ selects a random test point, xrand,
following the sampling scheme in (2), and ‘EXTEND’ grows
the tree based on the feasibility of xrand. Fig. 1(c) shows the
path planning using the proposed modified RRT. It can be seen
that the planner has a tendency to generate paths with less
branches in between the intersections. The modified algorithm
covers more space in the same amount of time when compared
to the standard RRT (see Fig. 1(b)).

Algorithm 1 Modified RRT-based path planning
1: procedure BUILD RRT

2: V ← xinit, E ← ∅, G(V , E)
3: for n = 1 to N do
4: Ikvis ← VISIBLE INTERSECTIONS(V)
5: X k

ints ← CONF SPACE(Ikvis)
6: xrand ← RANDOM STATE(Xfree,X k

ints, p, q)
7: G(V , E)← EXTEND(xrand)

8: procedure EXTEND
9: xnear ← NEAREST NEIGHBOR(xrand,G)
10: xnew ← STEER(xrand,xnear)
11: if OBSTACLE FREE(xnear,xnew) then
12: V ← V ∪ xnew
13: E ← E ∪ {xnear,xnew}

III. HUMAN-RRT COLLABORATION
The objective of human-RRT collaboration is to incorporate

expert knowledge into the automated path planning algorithm
given in Section II for improved performance. A touch-based
GUI as shown in Fig. 2 is developed. The GUI includes the
map of the environment for user feedback and interaction. The
functionality of the GUI is presented in the following sections.

A. RRT Run Control Panel
The RRT control panel enables the operator to start and stop

or pause the automated planner. It also allows the operator
to control two important planning parameters, the forward
velocity V (x) and the tree growth factor ε, in real-time.
The maneuverability of UAV depends on its forward velocity.
Therefore, the automated planner chooses V (x) based on the
location of nodes V ; the planned path results in slower speeds
along congested alleyways and intersections and higher speeds
along wider roads. The growth factor ε dictates the coverage
rate of the planner; higher ε covers the configuration space
faster but reduces maneuverability and increases the possibility
of getting stuck in the obstacles.
In certain situations, it might be desirable for the operator

to override the automation-selected values of these parameters.
For example, in target tracking, the operator may vary velocity

according to the velocity of the target. The growth factor ε
can be increased when planning in time sensitive situations
that demand higher coverage. The GUI enables the operator to
override V and ε by moving the slider or entering the value.

B. Gesture Control

Gesture control is designed for fast interaction to allow the
operator to spend more time on high-level planning activities.
It includes three commonly used motion gestures, which are
wayarea, space constraints, and waypoint as shown in Fig. 3.

(a) (b) (c)

Fig. 3. User interaction using (a) wayarea, (b) space constraint, and (c)
waypoint gestures.

Wayarea: In the context of urban environments, the wayarea
is defined as the roads or intersections that must be included in
the path by the automated planner. The gesture, when invoked,
is applied with a touch or click on the map. The applied gesture
is shown at the center of the wayarea for user feedback. The
objective is to force the planner to generate feasible paths to
go through the specified wayarea as early as possible.
Let garea ∈ R2 denote the center of the wayarea. The set of

intersections visible from garea be Iarea, and Inear be the nearest
intersection, where the metric can be the Euclidean distance
or the Manhattan length. Given the visible intersections Ikvis
to the nodes V at time k, the goal is to find the shortest path
between Ikvis and Inear. Let the map be modeled as an undirected
weighted graph Gm(Vm, Em), where Vm are the intersections,
Em are the connecting roads, and the edges are weighted
by the length of the roads. We propose to use Dijkstra’s
algorithm iteratively to obtain the distance between each of the
intersections in Ikvis and Inear on Gm. The overall shortest path
Ikshort corresponding to the intersection with minimum distance
is chosen as the desired path. To grow a branch of the tree
along the desired path, we progressively direct the algorithm to
visit intersections Ikshort by designing an appropriate sampling
scheme. We know that the first intersection Ikshort(1) is visible
to the tree, i.e., Ikshort(1) ∈ Ikvis. Therefore, the probability of
sampling points with xy-coordinates from the space covered
by Ikshort(1) is held high until the tree reaches that intersection.
When at Ikshort(1), the shortest path to Inear is re-computed
based on the revised set of visible intersections. The procedure
is repeated until arriving at Inear. The receding horizon planning
described above can take into account dynamic changes in
the environment, e.g., avoid hazardous areas or track dynamic
target. Once at Inear, the tree can be grown along the desired
road or intersection by randomly sampling points from that
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Fig. 2. Graphical user interface for human-RRT collaboration

road or intersection. The sampling pseudocode is given in
Algorithm 2.

Algorithm 2 Modified RANDOM STATE function
1: procedure RANDOM STATE

2: Ikshort ← DIJKSTRAS SHORTEST PATH(Ikvis, Inear,Gm)
3: if proj(V) /∈ Y(Ikshort(1)) then
4: xrand ← P(xrand ∈ X k

short(1))� p� q

where proj(·) : R2 × SO(3) → R2 projects tree vertices on
the xy-plane, and Y(Ikshort(1)) × SO(3) → X k

short(1). Also, in
Algorithm 2, P(xrand ∈ X k

short(1)) + p+ q = 1.
Space Constraints: The space constraints gesture specifies

structured restrictions on the planning space, i.e., the areas to
be excluded. In this work, roads or intersections are considered
as structured restrictions. Similar to wayareas, the gesture uses
click and drop interface where the operator selects the gesture
and drops it on the desired road or intersection.
Consider the operator selects a road, Rcons, as a planning

space constraint. Let Y(Rcons) ⊂ R2 be the two-dimensional
xy-space under Rcons. To account for the space constraints,
the EXTEND function in Algorithm 1 is modified. In addition
to obstacle check, the function checks whether the xy-position
of the new point is in Rcons to prevent the tree from growing
along the selected road (see Algorithm 3).

Algorithm 3 Modified EXTEND function
1: procedure EXTEND
2: if OBSTACLE FREE(xnear,xnew) then
3: if proj(xnew) /∈ Y(Rcons) then
4: V ← V ∪ xnew
5: E ← E ∪ {xnear,xnew}

The other case is when the operator selects an intersection,
say Icons. From the graph Gm, let the connected roads to Icons

be Rcons. Since the tree can not pass through the intersection,
it may not be desirable to grow the tree along the connecting
roads Rcons. The modified EXTEND function in Algorithm 3 can
be used to avoid Icons and Rcons. In both the cases, the weight
of the edges corresponding to roads Rcons in Gm is increased
to avoid planning paths through the space constraints.
Waypoint: Lastly, the waypoint gesture allows one to

specify a point that must be included in the path. Similar to
wayarea and constrained space, the waypoint gesture also relies
on the click and drop interface.
Let Pway ∈ R2 be a waypoint selected by operator on the

two-dimensional map. Also, let Inear be the nearest intersection
to the waypoint. Algorithm 2 can be used to find the shortest
path to Inear to grow the tree. From Inear, the points close to
Pway (within a small radius w from Pway) are sampled to grow
in the vicinity of the waypoint.
There is a provision to cancel any gesture by selecting ( )

and choosing the respective gesture on the map.

C. Desired Path
Apart from quick interaction through gestures, the operator

can specify a desired trajectory for the planner to follow.
For example, the operator may wish to plan a path that goes
around certain building to inspect and collect information or
to intercept a target as shown in Fig. 4.
The operator uses the touch screen interface to draw the

desired trajectory in two-dimensional space. The goal of the
RRT planner is to generate a dynamically feasible path for
constant altitude flight of the UAV along the operator-defined
trajectory. The trajectory can be discretized into l points
dn ∈ R

2, where n = 1, 2, . . . , l, and let Inear be the nearest
intersection to d1. The operator stroke that defines the desired
trajectory has a finite area, i.e., the trajectory has a finite width.
It is assumed that the width of the stroke along the trajectory
is constant and denoted by w ∈ R.
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5

Fig. 4. Automated planner growing a feasible path along the operator-defined
trajectory.

The sampling method described in Algorithm 2 can be used
to grow the tree to Inear. The points dn can be considered as
waypoints to be followed in a defined sequence. Therefore, we
progressively sample random points from a circle of radius w
centered at dn to grow nodes along the trajectory. Fig. 4 shows
an example of the operator-defined trajectory (continuous red
line) and the corresponding RRT-planned path (black dots).

D. No-Grow Area
The purpose of including no-grow (or do not grow) areas

in addition to space constraints (Section III-B) is to provide
the ability to specify more general planning restrictions. For
example, to avoid collateral damage, the operator may choose
not to pursue a target in populated areas.
The no-grow areas are specified as circles (see Fig. 5) and

can be drawn by selecting two points on the map. The first
point is the center of the circle and the distance between
the two points being the radius. Alternately, the operator may
select the center in the same manner, but the exact value of the
radius can be entered in the text field. To maintain situation
awareness, the no-grow areas are displayed with transparency.
Let An, n = 1, 2, . . . , l, be l number of no-grow areas. The

xy-space covered by An can be denoted by Z(An) ⊂ R2.
The edges in Gm corresponding to roads that are partially or
completely covered by Z(An) are weighted high to avoid plan-
ning paths through the no-grow areas. The EXTEND function in
Algorithm 3 is altered to include a check to find if the point
xnew is in any of the no-grow areas as shown in Algorithm 4.

Algorithm 4 Modified EXTEND function
1: procedure EXTEND
2: if OBSTACLE FREE(xnear,xnew) then
3: if proj(xnew) /∈ Y(Rcons) then
4: if proj(xnew) /∈ Z(An) then
5: V ← V ∪ xnew
6: E ← E ∪ {xnear,xnew}

Fig. 5. Automated planner avoiding no-grow areas (gray circles).

(a) (b)

Fig. 6. (a) Interface for defining risk, (b) Feasible paths generated by an
automated planner taking into account the state-dependent risk.

E. Risk to Grow
The gathered situation awareness can be used to effectively

manage the planner. The state-dependent risk or penalty is
one approach to encode the situation awareness. Consider the
following examples for clarity. When the UAV is operating
in an hostile environment, the operator may specify the risk
of the UAV getting shot down for different regions such that
the high-risk areas should be avoided as far as possible. In
another example of urban target tracking, the operator may
have a good estimate of the target location based on gathered
evidence. The location estimate can be encoded in the form of
risk to efficiently search the target. In this context, the risk is
the likelihood of finding the target and hence, high-risk areas
area favorable.
In the presented example, we consider the first notion of

risk, i.e., penalty to grow the tree. The map is divided in nine
equal area cells. The risk value associated with each cell can
be low, medium, or high. The operator selects the region using
the numerical pad with 1 − 9 keys, selects the risk value and
presses ‘OK’. The operator can view the nine cells on the map
using the ‘Show Risk Grid’ option. Fig. 6(a) shows an example
where the operator has selected medium risk for regions 6 and
9, and high risk for 5. The default risk value is low.
Let Z(Cv

n) ∈ R2 be the xy-space covered by the Cv
n, n =

1, 2, . . . , 9 cells and v = {lo,med,hi} be the risk value – low,
medium, and high, respectively. The growth of the RRT is
biased based on the risk value associated with each cell. The
probability of sampling from or growing in a high risk cell is
small compared to that of the medium and low risk cells. In
Algorithm 5, the probability pv is such that phi < pmed < plo.
The performance of risk-based planning for the example given
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6in Fig. 6(a) is shown in Fig. 6(b).

Algorithm 5 Modified EXTEND function
1: procedure EXTEND
2: if OBSTACLE FREE(xnear,xnew) then
3: if proj(xnew) /∈ Y(Rcons) then
4: if proj(xnew) /∈ Z(An) then
5: if proj(xnew) /∈ Z(Cv

n
) then

6: P(V ← V ∪ xnew) < pv

7: P(E ← E ∪ {xnear,xnew}) < pv

IV. CONCLUSION

Human-RRT collaborative algorithm and graphical user
interface is developed for path planning in urban environments.
A modified-RRT algorithm is presented to improve automated
planning. The user interface consists of the map of the en-
vironment and a set of tools for interacting with the planner.
Simple gesture controls are included to specify wayareas, space
constraints, and waypoints. The user can also draw a desired
trajectory for the planner to follow using touch interface. In
addition, to feed the operator’s situation awareness into the
planner, the operator can specify the state-dependent risk using
the interface.
The future work will consider evaluating and improving

the user interface using experiments involving human subjects.
Another avenue for future research is to estimate human
intentions to autonomously affect planning, build trust, and
reduce human interaction.

REFERENCES

[1] T. Hoeniger, “Dynamically shared control in human-robot teams through
physical interactions,” in Intelligent Robots and Systems, 1998. Proceed-
ings., 1998 IEEE/RSJ International Conference on, vol. 2. IEEE, 1998,
pp. 744–749.

[2] S. S. Mehta, M. McCourt, E. A. Doucette, and J. W. Curtis, “A touch
interface for soft data modeling in bayesian estimation,” in Proc. of the
IEEE Conference on Systems, Man, and Cybernetics (SMC), San Diego,
CA, 2014, pp. 3732–3737.

[3] A. Dani, M. McCourt, J. W. Curtis, and S. S. Mehta, “Information fusion
in human-robot collaboration using neural network representation,” in
Proc. of the IEEE Conference on Systems, Man, and Cybernetics (SMC),
San Diego, CA, 2014, pp. 2114–2120.

[4] T. B. Sheridan, Humans and automation: System design and research
issues. John Wiley & Sons, Inc., 2002.

[5] T. Fong, C. Thorpe, and C. Baur, “Robot, asker of questions,” Robotics
and Autonomous systems, vol. 42, no. 3, pp. 235–243, 2003.

[6] M. L. Cummings, S. Bruni, S. Mercier, and P. Mitchell, “Automation
architecture for single operator, multiple UAV command and control,”
Massachusetts Inst. of Tech., Cambridge, Tech. Rep., 2007.

[7] S. S. Mehta, P. E. K. Berg-Yuen, E. L. Pasiliao, and R. A. Murphey,
“A control architecture for human-machine interaction in the presence
of unreliable automation and operator cognitive limitations,” in Proc.
of AIAA Guidance, Navigation and Control (GNC) Conf., Minneapolis,
MN, 2012, pp. AIAA 2012–4543.

[8] M. L. Cummings, C. E. Nehme, J. Crandall, and P. Mitchell, “Predicting
operator capacity for supervisory control of multiple UAVs,” in Innova-
tions in Intelligent Machines-1. Springer, 2007, pp. 11–37.

[9] A. Kott, R. Budd, L. Ground, L. Rebbapragada, and J. Langston, “Build-
ing a tool for battle planning: challenges, tradeoffs, and experimental
findings,” Applied Intelligence, vol. 23, no. 3, pp. 165–189, 2005.

[10] M. P. Linegang, H. A. Stoner, M. J. Patterson, B. D. Seppelt, J. D.
Hoffman, Z. B. Crittendon, and J. D. Lee, “Human-automation collabo-
ration in dynamic mission planning: A challenge requiring an ecological
approach,” in Proceedings of the Human Factors and Ergonomics Society
50th Annual Meeting, 2006, pp. 2482–2486.

[11] A. D. J. Caves, “Human-automation collaborative RRT for UAV mission
path planning,” Master’s thesis, Massachusetts Institute of Technology,
2010.

[12] I. Maza, K. Kondak, M. Bernard, and A. Ollero, “Multi-UAV cooper-
ation and control for load transportation and deployment,” Journal of
Intelligent and Robotic Systems, vol. 57, no. 1-4, pp. 417–449, 2010.

[13] M. L. Cummings, J. Marquez, and N. Roy, “Human-automated path
planning optimization and decision support,” International Journal of
Human-Computer Studies, vol. 70, no. 2, pp. 116–128, 2012.

[14] A. Griner, “Human-RRT collaboration in unmanned aerial vehicle mis-
sion path planning,” Master’s thesis, Massachusetts Institute of Technol-
ogy, 2012.

[15] A. Kopeikin, A. Clare, O. Toupet, J. P. How, and M. L. Cummings,
“Flight testing a heterogeneous multi-UAV system with human supervi-
sion,” in AIAA Guidance, Navigation, and Control Conference (GNC),
2012.

[16] M. Lewis, “Human interaction with multiple remote robots,” Reviews of
Human Factors and Ergonomics, vol. 9, no. 1, pp. 131–174, 2013.

[17] J. Y. Chen, “UAV-guided navigation for ground robot tele-operation in
a military reconnaissance environment,” Ergonomics, vol. 53, no. 8, pp.
940–950, 2010.

[18] M. L. Cummings, J. P. How, A. Whitten, and O. Toupet, “The impact
of human–automation collaboration in decentralized multiple unmanned
vehicle control,” Proceedings of the IEEE, vol. 100, no. 3, pp. 660–671,
2012.

[19] S.-Y. Chien, H. Wang, and M. Lewis, “Human vs. algorithmic path
planning for search and rescue by robot teams,” in Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, vol. 54, no. 4.
Sage Publications, 2010, pp. 379–383.

[20] J. Y. Chen and M. J. Barnes, “Supervisory control of multiple robots
effects of imperfect automation and individual differences,” Human
Factors: The Journal of the Human Factors and Ergonomics Society,
vol. 54, no. 2, pp. 157–174, 2012.

[21] M. Lewis, J. Polvichai, K. Sycara, and P. Scerri, “17. scaling-up human
control for large UAV teams,” Human factors of remotely operated
vehicles, vol. 7, pp. 237–250, 2006.

[22] A. S. Clare, M. L. Cummings, J. P. How, A. K. Whitten, and O. Toupet,
“Operator object function guidance for a real-time unmanned vehicle
scheduling algorithm,” Journal of Aerospace Computing, Information,
and Communication, vol. 9, no. 4, pp. 161–173, 2012.

[23] A. S. Clare, P. C. Maere, and M. L. Cummings, “Assessing operator
strategies for real-time replanning of multiple unmanned vehicles,”
Intelligent Decision Technologies, vol. 6, no. 3, pp. 221–231, 2012.

[24] X. Sun, C. Cai, and X. Shen, “A new cloud model based human-machine
cooperative path planning method,” Journal of Intelligent & Robotic
Systems, pp. 1–17, 2014.

[25] S. M. LaValle, “Rapidly-exploring random trees a new tool for path
planning,” Computer Science Dept., Iowa State University, Tech. Rep.
98-11, Oct. 1998.

[26] N. Ladeveze and J.-Y. Fourquet, “On the collaboration of an automatic
path-planner and a human user for path-finding in virtual industrial
scenes,” in Control Automation Robotics & Vision (ICARCV), 2010 11th
International Conference on. IEEE, 2010, pp. 467–472.
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